Problem 1.5

Perpendicular vectors
Show that if $|\mathbf{A}-\mathbf{B}|=|\mathbf{A}+\mathbf{B}|$, then \mathbf{A} and \mathbf{B} are perpendicular.

Solution

The strategy for this problem is to show that $\mathbf{A} \cdot \mathbf{B}=0$. From this we can conclude that the vectors are perpendicular. Start off with the given equation.

$$
|\mathbf{A}-\mathbf{B}|=|\mathbf{A}+\mathbf{B}|
$$

The magnitude of a vector is the square root of the sum of its components squared. Thus, if \mathbf{A} and \mathbf{B} are n-dimensional, then

$$
\sqrt{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}} .
$$

Square both sides of the equation to eliminate the square roots.

$$
\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}
$$

Expand each of the squared terms.

$$
\sum_{i=1}^{n}\left(a_{i}^{2}-2 a_{i} b_{i}+b_{i}^{2}\right)=\sum_{i=1}^{n}\left(a_{i}^{2}+2 a_{i} b_{i}+b_{i}^{2}\right)
$$

Split up the series and cancel common terms on both sides.

$$
\sum_{i=1}^{n} a_{i}^{2}-2 \sum_{i=1}^{n} a_{i} b_{i}+\sum_{i=1}^{n} b_{i}^{2}=\sum_{\lambda=1}^{n} a_{i}^{2}+2 \sum_{i=1}^{n} a_{i} b_{i}+\sum_{i=1}^{n} b_{i}^{2}
$$

All that remains are the cross terms.

$$
\begin{gathered}
-2 \sum_{i=1}^{n} a_{i} b_{i}=2 \sum_{i=1}^{n} a_{i} b_{i} \\
-4 \sum_{i=1}^{n} a_{i} b_{i}=0 \\
\sum_{i=1}^{n} a_{i} b_{i}=0
\end{gathered}
$$

The sum of the products of the vectors' respective components is the definition of the dot product.

$$
\mathbf{A} \cdot \mathbf{B}=0
$$

The left side can be written in terms of the angle between the vectors.

$$
|\mathbf{A}||\mathbf{B}| \cos \theta=0
$$

The magnitudes are nonzero, so the cosine of the angle between the vectors must be 0 .

$$
\cos \theta=0
$$

Taking the inverse cosine of both sides gives the angle between the vectors.

$$
\theta=\frac{\pi}{2}
$$

Therefore, A and \mathbf{B} are perpendicular.

